skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buhrman, Robert_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many key electronic technologies (e.g., large‐scale computing, machine learning, and superconducting electronics) require new memories that are at the same time fast, reliable, energy‐efficient, and of low‐impedance, which has remained a challenge. Nonvolatile magnetoresistive random access memories (MRAMs) driven by spin–orbit torques (SOTs) have promise to be faster and more energy‐efficient than conventional semiconductor and spin‐transfer‐torque magnetic memories. It is reported that the spin Hall effect of low‐resistivity Au0.25Pt0.75thin films enables ultrafast antidamping‐torque switching of SOT‐MRAM devices for current pulse widths as short as 200 ps. If combined with industrial‐quality lithography and already‐demonstrated interfacial engineering, an optimized MRAM cell based on Au0.25Pt0.75can have energy‐efficient, ultrafast, and reliable switching, for example, a write energy of <1 fJ (<50 fJ) for write error rate of 50% (<10−5) for 1 ns pulses. The antidamping torque switching of the Au0.25Pt0.75devices is ten times faster than expected from a rigid macrospin model, most likely because of the fast micromagnetics due to the enhanced nonuniformity within the free layer. The feasibility of Au0.25Pt0.75‐based SOT‐MRAMs as a candidate for ultrafast, reliable, energy‐efficient, low‐impedance, and unlimited‐endurance memory is demonstrated. 
    more » « less